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ABSTRACT

Using randomly censored data, we develop a test of the null hypothesis

that a new item has stochastically the same residual lifelength as does a

used item of specified age to, versus the alternative hypothesis that a new

item has stochastically greater residual lifelength than does a used item

of age t,. We also compare our test with a related test, developed for a

complete-data model, in order to study the loss in efficiency because of

censoring.
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1. INTRODUCTION

Suppose a cancer specialist believes that a patient newly diagnosed as

having a certain type of cancer has a smaller chance of survival than does a

patient who has survived 5 years following a similar initial diagnosis. How

can such a claim be tested? To address such a testing problem, Hollander,

Park, and Proschan (1983) introduced the class G of "new better than usedI
at to" life distributions and the dual class G2 of "new worse than used at

Y life distributions.

G1s the neo better than used at t0 oZlss. Let t0>0. A life distribution

F (i.e., a distribution such that F(x) = 0 for all x < 0) is new better than

used at t0 if

P(Xt 0 ) S P(x)P(to) for all x z 0, (1.1)

where P = 1-F denotes the survival function.

G2t he new worse than used at to oZases. A life distribution F is new

worse than used at to if the first inequality in (1.1) is reversed.

We now describe another context in which the concept of new worse than

used at t0 finds practical application. For many electronic components,

experience shows that the failure rate of a component is higher during the

so-called "infant-mortality phase" (say [O,t0]) than after t0 . This could

be the consequence of the fact that there are really two populations which

have been mixed during manufacture - one population consists of well made

units, while the second population consists of poorly made units whose

defects show up immediately upon initial use or shortly thereafter.

The practical procedure used by manufacturers of such components is to

"burn-in" a portion of their product during [0, to] ; surviving components of

age t0 sell at a higher price than new untested components. The purchaser

1



-2-

who needs higher than usual quality for say, space vehicle assembly, safety

equipment, surgical devices, etc., is willing to pay for the statistically

higher quality units of age to.

The manufacturer or one of his high volume customers may be highly _-

motivated to carry out the statistical test proposed in this paper to

corroborate his engineering experience and judgement.

GI[G2] is related to but contains and is much larger than the class

HI[H2] of "new better than used" ["new worse than used"] distributions

defined below.

Hl. the new better than used oZase. A life distribution F is new better.

than used if

P(x~t) I P(x)P(t) for all x, t > 0. (1.2)

H2, the new wo'se than used cZa8o. A life distribution F is new worse

than used if it satisfies (1.2) with the first inequality reversed.

Thus the G1 property states that a used item of age to has stochastically

smaller residual lifelength than does a new item whereas the H, property

states that a used item of any age has stochastically smaller residual life-

length than does a new item. Analogous interpretations hold for G and 2

The only members in HInH2 are the exponential distributions. Theorem 2

of Marsaglia and Tubilla (1975) shows that the only members of G1nG2 are

(a) exponential distributions, (b) survival functions P for which F(0)=1

and P(t0)=O, and (c) survival functions of the form P*(x)=P(x) for Ogx<tO,

F PJ(t 0)P(x-jt0) for jtoX<(j+1)t0 , j=Ol,2, ..., where P is a survival

function defined for x>O. If F has a density function on (0,t0], then the

failure rate of F* is periodic with period t0.
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Some examples of new better than used life distributions are the Weibull

where F0 (t) - l-exp(-(Xt)0), t > 0, A > 0, 0 a I and the gaa where

Fe(t) = foA x 8  exp(-xx)/r(e), t z 0, A 2 0, 8 1.

Let C* be the class of life distributions which are not new better than

used but are new better than used at to. Hollander, Park, and Proschan (1983)

give the following method of constructing some distribution functions in C*.

Suppose that G is a new better than used distribution with failure rate function

rG(x) > 0 for 0 1 x < -. Let F have a failure rate function rF satisfying

(i)rF(x) : rG(x) for 0 S x : to, (ii)rF(x) a rG(x) for to : x < -, and

(iii)rF(x) is strictly decreasing for 0 S t r t,, where 0 < t 1 < to . Then

F e C*. To develop an example of this construction, let rG(x) = 1 for

0 S x < -, and let rF(x) = 1-(e/t0 )x for 0 s x < to and o0 < e 1, and

rF(x) = 1 for to : x < -. (We do not let 0 exceed 1 since we want to ensure

that rF(x) remains positive as x - to.) Then rF satisfies (i),(ii), and

(iii) and thus F is in C*. The corresponding survival function can be written

as

Vq(t) = exp[-{t-e(2to)-lt2)], 0 < 0 S 1, 0 5 t < to#

a exp[-(t-e(2)It 0}], 0 < e S 1, t a to.

Hollander, Park, and Proschan (1983) derived a test of
H0: F c G1 n G2  (1.3)

versus

HA: F e GI* (1.4)

where

G = {F: P(x~to) s P(x)P(to) for all

x z 0 and inequality holds for some x a 0).
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The null hypothesis H0 asserts that a new item has stochastically the same

residual lifelength as does a used item of age tO. (Equivalently F satisfies

H0 if it satisfies (1.1) where the first inequality is replaced by an equality.)

The alternative hypothesis HA asserts that a new item has stochastically

greater residual lifelength than does a used item of age t0 . The test proposed

by Hollander, Park, and Proschan was for the model where we obtain a complete

random sample from the life distribution F. In the present paper we propose

a test of H0 versus HA based on a randomly right-censored sample. The test is

derived in Section 2. In Section 3 we compare the tests for the uncensored

and censored models and obtain a measure of the loss in efficiency incurred

because of censoring. Section 4 contains an example.

2. A TEST OF H0 VERSUS HA USING INCOMLETE DATA

Let X1 , ..., Xn be independent and identically distributed according to

a continuous life distribution F, and YIV """ Yn be independent and identi-

cally distributed according to a continuous censoring distribution H. Also,

let the X's be independent of the Y's. The censoring distribution H is

typically, though not necessarily, unknown and is treated as a nuisance

parameter. In the randomly censored model we do not observe X, , Xn,

but instead, we observe the pairs (Zi, 6i), i = , ... , n, where

Z= min(Xi,Yi)

and

I if Zi  a X.

0 if Zi a Yi



Our test is based on an estimator of the parameter

T(F) - (P(x.t 0 ) - P(x)F(to))dF(x)
0

- fP(x.t 0 )dF(x) - fet 0 •
0

Under H0 , T(F) = 0 whereas under HA, T(F) < 0. In fact, since F is assumed

continuous, under HA, T(F) is strictly less than 0. T(F) gives a measure of

the deviation of F from H0 towards HA. It is natural to base a test of H0

versus HA on a consistent estimator of T(F), and we utilize T(F n) where Fn

is the Kaplan-Meier (19S8) estimator. (Such an approach has been used by many

authors including Efron (1967) in the context of a two-sample location test,

by Koziol and Green (1976) and Cserge and Horvath (1981) in testing goodness-

of-fit, and by Chen, Hollander, and Langberg (1983a) in testing whether new

is better than used.)

Under the assumption that F is continuous, the Kaplan-Meier estimator can

be expressed as

1 6MFnCt) - It {(n-i)(nil,- i t [0, Zn),
n fi*Z tJ (n)

(i) t)

where Z(0) - 0 < Z( )  . Z(n) denote the ordered Z's and 6(M is the 6

corresponding to Z(i). Here we treat Z as an uncensored observation,
UY (n)

whether it is uncensored or censored. When censored observations are tied

with uncensored observations, our convention for ordering the Z's is to treat

the uncensored observations as preceding the censored observations.

Weak convergence of the Kaplan-Meier estimator, regarded as a stochastic

process, has been established by Efron (1967), Breslow and Crowley (1974),

Meier (1975), and Gill (3983). Strong consistency of the estimator was

proved by Peterson (1977) and Langberg, Proschan, and Quinzi (1981). Exact
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mall-sample moments of P n under a model of proportional hazards, were

obtained by Chen, Hollander, and Langberg (1982).

Our test statistic is

TC def T (f =fF (x~t NP (x) (t)

Frc ptain n n 0:n 2n 0*
For computational purposes we may rewrite T€ as

n

n i~l {k:(k) <Z(i) tO)

((n-k) (n-kl) 1)6 (k)2{k:Z (k) StO } )

Asymptotic normality of nl2(T;-T(c)) can be established under the
f.n

assumptions

(A.l) The support of both F and H is [0,-).

1-c- -1(A.2) sup([P(x)j ["[(x)] , x c [0,-)) < - for some v > 0.

Condition (A.2) restricts the amount of censoring. For example, in the

proportional hazards model where fi(t) = (P(t))0, (A.2) implies that B < 1,

which means that the expected proportion of censored observations 0/0+1

must be less than .5.

We now state the main result of this section and then sketch its proof.

THEOREM 1. Assume that (A.1) and (A.2) hold. Then nl/2 (T - T(F)) converges
2

in distribution to a normal random variable with mean 0 and variance a give

by equation (2.1) below.
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Sketch of Proof. For n 1,2, . the expression for T- T(F) can be

written as:

- T(F) - f{P (Xt 0 ) -P(x+t o ) 1dF(X)-I(fn (x~t) -P(x+t 0 ) )dF(x)

n JF~x4t 0 )dFnCX) - F(x to)dF(x)

+ IPn(+to)dF(x) - fP(x+to)dF(x)

12 1-

Unless otherwise specified, all integrals range over (0, '). Upon integration

by parts and change of variables, we have:

Jf(x+to)dF(x)-f(x+to)dF(x) = -f (x-t')dF(x)+fF(x-to)dF(x), n = 1, 2,

Thus for n = 1, 2, ... ,

nl/2(Tc-T(F)) B + B

where

Bn, = nl/ F nx+t0) - (x+t0) }dFn(x)'-I
(F n c +t 0 ) l x+t0))dF(x),

and

Bn, 2 = nl/ 2[ n (X+to)-P(X~t0)-t {n (x-t0)-F(x-t) }-0 .{ n(to)
-P (t0) 

)1]dF(x).

Using Theorem 2.1 of Gill (1983) and arguments similar to those in the

proofs of Lemmas 2.2 and 2.3 of Chen, Hollander, and Langberg (1983a), we

can show that

(a) Bn,1 converges in probability to zero,

(b) Bn,2 converges in distribution to the random variable

Z0 j{(x~to)-#(x-to) -1(t0)}dF(x), and
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(c) The random variable Z0 is normal with mean 0 and finite variance

a 2 _JE- 0(x+t )-O(x-t 0 ) - 1(to)) (*(u+t 0 )-(ut 0 ) - (t0)dF(x)dF(u). (2.1)

Here (#(t), te(O,-)] is the Gaussian process which is the limit of the

Kaplan-Meier estimator regarded as a stochastic process. The mean of f(t)

is zero and its covariance kernel is

E#(t)#(s) = F(t)F(s) f (K(z)F(z)-1 dF(z), 0 5 S < t < , (2.2)
0

where K(t) = F(t)A(t). This concludes the sketch.

The null asynptotic mean of n/ 2 Tc is zero, independent of the distri-n

butions F and H. However, the null asymptotic variance of nl/ 2Tc dependsn

on both F and H and thus it must be estimated from the incomplete observa-

tions (Z1,61), .., n V6n). Under H0 it can be shown, after straight-

forward but tedious integration using the expressions for a2 and Ef(t)*(s)c

given in (2.1) and (2.2), that the null asymptotic variance of nl/ 2Tc is:• n

a2 (1/4) F2 (t 0) 7 3 (z) (K(z+to)} -1dF(z)
co ~ 00

(2.3)

+ (l/4)F2 (tojF 3 (z){K(z) 'ldF(z) - (1/2)p 4 (tol)F3(z){K(z~t O) l-dF(z).
0 0

If there is no censoring, that is, if K(z) = F(z) for z c [0, -), then 2 2
0co

reduces to (1/12)P(t0)+(1/12)F2(t0 )-(1/6)F$(t0). This expression agrees

with the null asymptotic variance a 2 of the statistic n1/2T(Gn) (where G*

is the empirical distribution function of a random sample from F) advanced

by Hollander, Park, and Proschan (1983) for testing H0 in the complete data

case. Expression (2.3) can be simplified, by a change of variable in the

first and third terms, to
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a = (1/4)(F(tO) 2 f3(u)(Ku)}dFu)
td (2.4)

(1/4)F2(t0)7F3(u){K(u) }'ldF(u) - (1/2)f F3(u){K(u)}-dF(u).
0 to

2
To obtain our estimator of ac0 we introduce some notation. Let

Z( ... Zn ) denote the ordered Z-values. Let Kn denote the empirical

distribution function of the Z-values. Thus nKn (t) = "number of Z-values < t."

Since T= 0 when Z(n) < to, we will assume our sample is such that Zcn ) ' to.
Replacing P by F ns by Kn, and - by Z in (2.4) yields the estimate ;cn

n (n) c

defined by (2.5).

= [(l/4){( n(t) - (1/2)]

F (W )(K (W W-)}1 F (W )-F (W
0i:t0 W(i)"Z(n)f (i) n (i n M n (i-1)

(2.5)

(l/4)F n (t 0)
{i: l5i:5- (n)}

F n(W i){ (WiV -)1 ]{Fn(W i)-Fn cWci l ) )

n (iM)k n (i)- n (WiM)P n ( i-l)))

where W(0) 0 < W(1) ' W(2) W(T(n)) are the ordered observed

ntn)
failure times, and T(n) = 6. is th3 total number of failures among the

i=1

n observations.

We are unable to prove that 0cn consistently estimates a 02 under our

"2(A.1), (A.2) assumptions, but we have investigated properties of acn via

a limited Monte Carlo study. Table 1 investigates the accuracy of Q2 ascn

an estimator of a 2 and the accuracy of the normal approximation in the
cO

cases where F is exponential with scale parameter 1 and H is exponential
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with scale parameter X, for the choices X=.1 and X=1/3, with t0=.6,1, and

n=100, 150,200. Column 2 of Table I gives the average value of en' averaged

over 1,000 Monte Carlo replications. Column 3 gives the sample standard

deviation s of the 1,000 a values. It is seen that 8 tends to be belowcn c

the true value a,2 but the estimator improves as n increases.

The approximate a-level test of H0 versus HA, which rejects H0 in favor

1/2 c--lOf HA if n Tnacn S -z and accepts H0 otherwise, is called the NBU-t0 test.

The approximate a-level test of H0 versus the alternative that a new item has

stochastically smaller residual lifelength than does a used item of age to

i/2 c--iis called the NWU-t0 test. The NWU-t0 test rejects H0 if n Tnacn za

and accepts H otherwise. Here z is the upper a-percentile point of a0 a

standard normal distribution. Columns 4,5,6,7,8,9 pertain to the convergence

to asymptotic normality of the standardized test statistic T* = n1/2Tc -I.
n cn

Columns 4,5,6 give estimated probabilities of the events (T* : -z 1, anda

columns 7,8,9 give estimated probabilities of the events {T* a za},

a = .10,.05,.0l. It is seen that the convergence to asymptotic normality

is slow. The probability a assigned to the event (T* -za-z by the normal

approximation is less than the corresponding Monte Carlo estimate P(T* S -za}.

Thus the NBU-t0 test based on the normal approximation tends to give P values

that are less than the true P values. The probability a assigned to the

event {T* a z I by the normal approximation is greater than the correspondiibg

Monte Carlo estimate P{T* a za). Thus the NWU-t0 test based on the normal

approximation tends to give P values that are greater than the true P values.
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3. EFFICIENCY LOSS DUE TO CENSORING

In this section we study the efficiency loss from censoring by comparing

the efficacy of the test based on Tn = T(G ) for the uncensored model with
n n

the efficacy of the test based on TC for the randomly censored model. Also
n

we present a monotonicity property of the efficiency as the amount of censor-

ing increases.

Since Tc and T have the same asymptotic means, the value of l-R, where
n n

Tc Tn 22
F,H(n' T) O/cO'

can be taken as a measure of the efficiency loss due to censoring (cf. Chen,

Hollander, and Langberg, 1983a). Here a2 and a0 are the null asymptotic0 coaethnulaypoi

variances of n1/2T and nl/2TC respectively.n n
We consider the case where the censoring distribution is exponential

with parameter A and the life distribution is exponential with parameter 1.

To satisfy Condition (A.2) we take A < 1. Then we have

2_to -2t0  -3t0
00 = (1/12)e + (1/12)e - (1/6)e ,

2 (1/4-A) (e X)t0  -2t 0  ( )t0
OcO = 14' }•C e - 2e

and

R - (l-(X/3))(l+e -2e )/(e +e -2e ) (3.1)

In Table 2, values of R given by (3.1) are presented for several

choices of t0 and A < 1. The table shows that as X decreases, the value of

R increases to 1. Note that A * 0 implies no censoring. The table also

shows that as to increases, the efficiency of TC with respect to Tn

decreases.
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The next theorem shows that if H2 is stochastically smaller than HI

(i.e., there tend to be more censored observations with censoring distri-

bution H2 than with H1), then the efficiency of TC with respect to Tn under2 n

H is greater than under H2.

THEOREM 2. Assume that H1 ! H2, where H1 and H2 are censoring distributions.

c  TcThen R I ?- R2, where R I = e F,HI(7; n' T) and R 2 =e F,H2(7; nT Tn"

Proof. Since the numerator of eF,H i(Tan, T ) i = 1,2, does not depend on

H, it suffices to show that o0(Hl) 5a 0 (H2) where a 2(H) is given by (2.4).

(Recall that K = i.) Since HI - H2 we have (] [A2 I
. Note that212 2

a o(H) is increasing in [i]-1. Thus, it follows that ac0(Hl) a Oc0(H2).-

Consequently, the desired result follows.

From Theorem 2, it immediately follows that the maximum value of R is

equal to 1 and is achieved when H(x) =1 for x k 0, that is, when there is

no censoring.

c with respect to Tn when F(x) = exTable 2. Efficiency of T n wit repc toT hnP - X 0

and fi(x) - e"  x a 0, A > 0

1/2 1/4 1/8 1/20 1/60 1/100

.2 .9008 .9514 .9759 .9904 .9968 .9981

.6 .7265 .8583 .9280 .9709 .9903 .9942
1.0 .5823 .7711 .8804 .9509 .9835 .9901
1.4 .4652 .6907 .8338 .9307 .9765 .9858
2.0 .3325 .5843 .7673 .9003 .9657 .9793
3.0 .1931 .4442 .6686 .8520 .9482 .9686
4.0 .1146 .3411 .5854 .8077 .9314 .9583
5.0 .0688 .2639 .5146 .7670 .9154 .9484
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4. AN EXAMPLE.

The data in Table 3 are an updated version of data analyzed by Koziol

and Green (1976). The data correspond to 211 State IV prostate cancer

patients treated with estrogen in a study by the Veterans Administration

Cooperative Urological Research Group (1967). By the tarch 1977 closing

date, 90 patients had died of prostate cancer, 105 had died of other diseases,

and 16 were still alive. The latter 121 observations will be treated as

censored observations (withdrawals).

Table 3. Survival times and withdrawal times in months for 211 patients

(with number of ties given in parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3),
17(2), 18, 19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2),
30, 31, 32(3), 33(2), 34, 35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3), 46,
47(2), 48(2), 51, 53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2), 100,
145, 158.

Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(S),7(S), 8, 9(2), 10, 11,
12(3), 13(3), 14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 23, 25, 27, 28, 31,
32, 34, 35, 37, 38(4), 39(2), 44(3), 46, 47, 48, 49, 50, 53(2), 55, 56, 59,
61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2), 106, 109,
119(2), 125, 127, 129, 131. 133(2), 135, 136(2), 138, 141, 142, 143, 144,
148, 160, 164(3).

Koziol and Green (1976) stated that experience had suggested that had

the patients not been treated with estrogen, their survival distribution F

for deaths from cancer of the prostate could be taken to be exponential with

a mean of 100 months. With this in mind, various authors have applied

goodness-of-fit tests to the prostate cancer data. A recent reference is

Csorgo and Horvath (1981) whose procedures indicate lack of support for the

simple null hypothesis that F is exponential with mean 100. (Csergo and

Horvath also discuss other references relating to tests of thi. simple null

hypothesis.)
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Tests of the composite null hypothesis of exponentiality (with unspeci-

fied mean) were performed by Chen (1981), Chen, Hollander, and Langberg

(1983a), and Chen, Hollander, and Langberg (1983b). These tests indicated

lack of support for the hypothesis of exponential aging. Chen, Hollander,

and Langberg (1983b) also plotted an empirical mean residual life function

for the data of Table 3. Their plot tends to decrease up to around 2S months,

then tends to increase up to about 70 months, and then decreases again.

The null hypothesis H0 (1.3) of this paper is appropriate if one has

a priori reasons to suspect that a patient after t0 months would have sto-

chastically the same residual lifelength as a new patient. However, we are

not aware of any such a priori notions in this prostate cancer setting, and

there is no natural value of to. Hence, our test is performed primarily for

purposes of illustration. With the choice t0 = 60, we find T21 1 = .0116,

a 2 .3354, and (211)l=2Tc 5-1  = .290, a value supporting H0.C211 = - 211 c211
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